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TECHNICAL MEMORANDUM 1281

UNSTABLE CAPILIARY WAVES ON SURFACE OF SEPARATION
OF TWO VISCOUS FLUIDS *

By V. A, Borodin and Y. F. Dityakin

The study of the breakup of a liquid Jet moving in another medium,
for example, a Jet of fuel from a nozzle, shows that for sufficilently
large outflow velocities the Jet breaks up into a certain number of
drops of different diameters. At still larger outflow velocities, the
continuous part of the jJet practically vanishes and the Jet immediately
breaks up at the nozzle into a large number of droplets of varying
diameters (the case of "atomization"). The brealup mechanism in this
case has a very complicated character and is quite irregular, with the
droplets near the nozzle forming a divergent cone.

Rayleigh (reference 1) was the first to make a theoretical study
of the Jjet and to establish the possibllity of droplet formation. The
digturbance of a Jet of an 1ldeal fluid flowing into a vacuum and having
a wave length 4.4 timeg as large as the diameter of the jet i1s shown
to grow wmore rapidly than other disturbances; eventually, the jet
breaks up into droplets of the same diameter. Rayleigh succeeded in
determining theoretically the drop diameter, the value of which agrees
well with tests on jets issulng with very small velocities. ILater,
the viscogilty of the Jet was also taken into consideration. The
viscogity is found to decrease the rate of amplitude increase of the
disturbances but the ratio of the optimal length of the wave to the
diameter of the Jjet remalns unchanged.

Other authors that studied the conditions of the axial-symmetrical
breakup of a Jet of a viscous 1liquid found that the ratio of the optimal
wave length to the Jjet dlameter was somewhat greater than that computed
by Rayleigh.

In addition to the viscosity, Tomotika (reference 2) took into
account the density and viscosity of the medium surrounding the Jet
and obtained good agreement with tests on Jjets issulng with very small
velocities for which droplets of the same dlameter are formed.

*"Neustoichivye Kapilliarnye Volny na Poverkhnostl Razdela Dvukh
Vyazkikh Zhidkostei." Prikladnaya Matematika i Mekhanika. Vol. XIIT,
no. 3, 1949, pp. 267-276. :
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- . Neither of the aforementioned theories of the breakup of a liquid
Jet provided a basis Tor the phenomenon for the case of breakup into
droplets of different diameter, a fact that is explained by the
idealized conditions of the problem. This idealization consisted either
in neglecting the viscosity of the Jet, the density, and viscosity of
the surrounding medium, or the inertial forces. Such simplifications
were agsumed in view of the complicated mathematical equation (generally
transcendental) that determines the relation between the wavelength
and the Increment of the vibration amplitude.

In the present paper, an attempt is made to provide a mathematical
bagls for the possibility of the appearance of droplets of different
diameters as a result of the Jjet breakup on the basis of the considera-
tion of unstable capillary waves on the surface of separation of two
viscous liquids.

For slmplification of the solution of the problem, particularly
for obtaining the algebraic characteristic of the equation, the
lengths of the capillary waves on the surface of the liquid jet are
agsumed to be so small in comparison with the jet radius that the jet
may be considered infinitely large; study of the stability of the
plane surface of separation of two infinitely extending viscous fluids
can thus be made. This aggsumption represents a congiderable degree of
idealization but nevertheless permits & qualitative explanation of
not one but several unstable capillary waves that, in passing through
the jet, lead to the formation of droplets of differing diameters.

The existence of several unstable capillary waves is demonstrated
that can lead to the breakaway of several infinitely long strings of
different dimensions from the partition surface. The problem investi-
gated gives a rough approximation of the disintegration pattern of a
liguid Jjet in another medium and. does not pretend to explain the com-
plicated mechanism of the limiting form of the disintegration of a
jet, namely, atomization. Nevertheless, one of the peculiarities of
atomization, the appearance of a dimension spectrum of the droplets,
begins to appear even for the given idealized consideration of the
stability of the partition surface.

1. Equations of small waves and their solution. - A plane surface
of separation of two invinitely extending viscous fluids (fig. 1) is
considered. The viscosity and density of the lower fluid are denoted
by py and pp, respectively, and of the upper fluid by upp, and pp.

The lower fluid is assumed to move with the velocity Vq and the upper
fluid with the velocity V,, the direction of motion being the same and

the velocities independent of y.
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A study of the character of the equilibrium of the surface of sep-
aration under the action of the viscous forces and the forces of surface
bension that impart to both liquids small disturbances parallel to the . .
x-axig is presented. The fluids shall be c¢ousidered incompressible and
welghtless and shall cause certain disturbances to the components of the
motion. '

p=P+p*

It is further assumed that the velocities of the imposed disturb-
ances and their derivatives up to the third inclusive are small and that
the magnitudes of the second-order smallness may be neglected.

From the Navier-Stokes equationg, the following equations of the
imposed disturbances are obtained:

ov ov 1 Op*
X x D
v = - = VA
ot ox P ox Vx
(1.1)
ov ov dp*
J —J _ _ 1 op* A
St + V 3% = o oy + Vy
where UV = p/p is the kinematic viscosity.
The equation of continmity is
Ovx . o _ o (1.2)
ox oy
By introducing the stream function of the disturbance
oV =
Vy = T Vg = = T 1.3
X7 dy J ox (1.5)

and by elimineting the pressure p¥ from equations (1.1), the ideallzed
equation 1s thus obtained in the Helmholtz form

- 6—A-:Y. - .a_Al = ' v. | .' | -
VAAY - V = e = © | (1.4)
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Let the stream function of the imposed disturbance be a periodic
function of X and of the time +t:

v = £(y)el (x-FY) (“ - E}?’) | .9

where o 1s the propagated circular frequency of the vibrations (the
wave number), A is the wavelength of the imposed disturbance,

B =By + 1By 1is the complex frequency of vibrations in time, By

is the real frequency of vibration in time, and Bi is the increment

of the growbth of vibration or the decrement of damping.

The character of the wave motion on the surface of separation
af'ter the imparting of disturbances to both surfaces will thus depend
on the sign of the imaglnary part of the frequency Bi’ I py is

positive, there will be an increase in the wave amplitude with time;
if B3 1s negative, there will be a damping of the wave amplitude;

finally, if B, = 0, there will be an aperiodic increase (B; > 0)
or & damping (Bi < 0) of the wave amplitude. By substituting expres-
sion (1.5) in equation (1l.4), the following equation is obtained:

v 4

vetV o (2¢Pv - iB) £ - (iBe? - vad) f - iVa (£" - @2f) = 0 (1.8)

The problem of the characteristic values of a homogeneous system
of equations of the fourth order will be considered.
2

By setting f" - o°f =3, a system of equations of the second
order is obtained.

" + (-1 E—%-Yi'-“ - c.z)cp =0 " - off = @ (1.7)

Hereinafter, the following notations are introduced:

Vit g (5, (.0

The solution of the first of equations (1.7) has the form

P = Cleimly + Cze'imly (1.9)

By substituting expression (1.9) in the second of equations (1.7),
a non-homogeneous equation is obtained for which the solution is
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eim]y -iml.Y - ‘
f=m—g——70l -~ —5—s O+ Cz+e™WC, (1.10)

The stream function for the lower aﬁdrﬁypér liquids éccording to
equation (1.5) will be :

- imyy o-1m1y .
¥y = gllox-pt) [ —%———2- cy - —%———2 C, + e Cp + 0™ W C, (1.11)
m + m. + o -
1 1
. . | impy -imp -
Vo, = el(ox=-Bt) (. _e Cg - -2 v Cg+07 Cqte v Cq (1.12)
2 2 2 2
ID.2 + mz + & :

The arbitrary constants C; must be determined from the conditions
on the surface of separstion and at Infinlty.

2. Boundary conditions. - The boundary conditions of the problem
will be as follows:

1. At infinity (y = im), finite solutions must be maintained for
¥, and V5. Hence, the arbltrary constants of the terms wilth positive

exponents for \Vl and with negative exponents for V¥ o must be equated
to zero: C) = Cz = Cg = Cg = 0. Thus, equations (1.10) and (1.11) will
have the form

-imyy —1
i (ax-Pt e -ay
Wl=e1(d‘xﬁ) -———é———2—02+e 04
ml + g
(2.1)
. impy
\, - el(GJC-B't) - e = C. + ea‘y c
2 m. + CLZ S 7
2
-

2. On the surface of geparation, there must be no slip, that is,
v = (v

(vyl) y=0 (V.Yz) y=0

or
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( lO )
oy y_.o
( ) (O )y

ox y=0 X =0

3. The tangential stresses on the surface of separation are
continuous

|
Q/
&
S’
P
o
_J

> (2.2)

RV )og = Hg(Awg)y=o (2.3)

4. The difference between the normal stresses Pyl and Py2

on the surface of separation is equal to the pressure brought about by
the surface tension; that 1is,

Gvy1 ov 2 Bzh

- -L _l—

I = - D 4+ 2 - - + 2 =T .
le Py2 ( Py + ey Oy P2 H2 =X \TZ (2.4)

wnere T 1ig the capillary constant of one liquid relative to the other
and h 1is the rise in the surface of separation at the point x.

By using equations (2.1), the boundary conditions (2.2) are obtained
in the form

mp- + @ me® + o
f (2.5)
C C
- ——2——2—5 + C4 + 5 2 5 - C7 = O
m- + a I!]2 +

Similarly, the boundary condition (2.3) is obtained in the form

2
" c m
—l' - - ——2--—2———2' + C4 CI,2 + _EL—'Z_ CZ + (IZC4
M2 me + o my ¢ + o
C mo?
—_— . Cq of 4 2 Cs + a?C7 (2.8)
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_ The pressures p; and p, are computed from equations (1.1)
and (2.1). Thus
= _ ”._im{ § d?ﬁr e )
Dy = plel(CQC—Bt) ae —_'y 1 _ vy + lﬁ_ + mlvl CB +
m12 + g2\ Iy mj mj
. 2 s 2\~ '
_(B + iv,0f - Vo 1vla.)e ¥ Cy (2.7)
i (ox-pt)| _oe 102 i’2""2 Voo 1p
Po = Ppe - + == + moVp|Cx + (B - Vpoa) e™ Cq

mz + O

The rise of a point on the surface is a periodic function of x
and t.

b = gol(oX-Pt) (2.8)

where H is the maximal rise of & point on the surface of separation.'

The velocity of the raised point on the surface of separation is

oV
" (1) ., =<—<—1) -h o,y 0 (2.9)
y=0 ox y=0 ot ox

After differentiating expressions (2.1) and (2.8) and by substi-
tuting in expression (2.9), the following equation is obtained:

C
H = _T,E;__ Cy - __E_E__§ (2.10)
vy - P my” +

By substituting equation (2.10) in (2.9) and by differentiating
equation (2.9), : .

3 Cp

- i(ox-pt)
e Wy - P mlz + of Cale (2.21)
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By computing the derivatives val/ay and avyz/ay “and substi-

tuting them simultaneously with expressions (2.7) and (2.11) in (2.4),
the following boundary condition is obtalned:

o -up0f | 1pyVia - 1Bpy Ta?

+ mypy + ————=\|Cs -
m 2 + of my L7 av, - B2

2 s .
a® - ip,Vso + 1
plB - PV - inlaz + S Cy + &% M2 P2V2 sz +
G.Vl - B mzz + az I

. 2
3m2u2:]05 + (PgB - ppVpa + 12p5a”) €y = O (2.12)

The following nondimensional parameters are then introduced:

7 = 623, 7]
1
v
1
Ry = =2t
1
Ula,
v
2
Rz =v—ul
2
$ (2.13)
v
A=_2L
Vo
T
N:._E_.];.
2
By @
0
K = &
Mo J
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where

m

ma

Equations (2.5), (2.8)
sional parameters. The fol

¢ = B/a is the complex wave velocity.

~ Equations (1.8) can then bgurqpresgntedﬁip_the forms

anfi(z - BRy) - 1

1

anfi(za - Rp) - 1

, and (2.12) are represented in nondimen-'
lowing notations are first introduced:

a.¥ =y i 2 = + N =ua1
2 . N \_ .2
by* = oy (Z'Rl'21 + Rl-Z> = @My
. 2(1 - 2Ry + 2AZ) 5
Cc = K = = KMo~ C
1 2 207°Cy
(2ZA-Ry)Af1(ZA-Rp) - 1
a3*=—_].'_ i =?_3_
2 Z-Ry o2
> (2.14)
a.* = pza? (ZA-R, + 21) = pza?dl
c*—_.l'—_...j‘_-cs
S5 T 7 2 ZA-Ry 2
S _ 22
ay* = G_A/i(Z-Rl) - 1=
oL A1(Za-R5) - 1 e
2 T a ZA-Ro T oa B

where a,, a5, az, by, C1,

gional magnitudes.

€y, ¢z, 8nd d, are likewise nondimen-
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The following system of equations is then obtalned for the con-
stants Cp, Cy, Cg, and Cq:

al*CZ - bl*C4_ -+ cl*CS + dl*07 =0 7]
BZ*CZ - GC4 + Cz*CS - C7 = 0
5 (2.15)
-G/S*Cz + C4 + 03*05 - C7 =0
K Cyp - Cg =0

This system of homogeneous equations has solutions different
from zero if its determinant is equal to zero. By setting up the
determinant and expanding

2K(aq + cl) + (47 - Kbqy)(ag + Kep) + (Kby + dl)(Kc3 - az) =

By solving this equation for 2, the following wave equation of
the 18th degree with complex coefficients 1s obtained:

. 17 1 s =
(rl7 + 1317) 20+ s+ (rl + 1sl) 7 + (r0 + 1so) =0
(2.16)

18
rigZ +
The real and imaginary parts of the coefficients depend on the
five nondimensional parameters: Ry, Rp, A, N, and K.

3. Investigation of roots of characterigtic equation. - The
increase in oscillation, that is, the loss of stability of the sur-
face of separation, arises from those waves for which the imaginary
part of ths frequency is positive (Bi > 0). Hence, the investiga-
tion of the roots of equation (2.16) should determine those ranges
of the parameter N or the wave number a in which the complex
roots of the equation lie in the upper half-plane.

By the Rayleigh hypothesis, the further development of an
unstable deformation, that is, the form and dimensions of the parts
breaking away, is determined by the critical (or optimal) disturb-
ances. The critical disturbances may ve defined as those that
develop more rapidly than the others or that correspond to the
maximum incrsment of the growth fi. This principle of deter-
mining the character oi the unstabls deformations by the character
of the maximun unstable disturbance has been experimentally

i

confirmed by a number of investigators (reference 3).



NACA T™™ 1281 11

In the case congidered, the growth in the amplitudes of the
oscillations will lead to breakaway of infinitely long strings

- from the surface of separation, similar to the formation and

breakaway of wave crests. The separation will take place for such
values of « or wavelengths A for which By has the maximal

value.

If a spectrum of small-period disturbances that can be developed
intc a Pourier series can be assumed to be imposed on both liquids,
the harmonics with the wavelengths equal to the wavelengths of
the maximal unstable disturbances bring about a separation of
infinitely long strings from the partition surface. Because the
characteristic dimension (for example, the diameter of the trandgverse
string) is connected with the length of maximal unsteble digturbance,
gtrings of different dimensions will break away from the surface of
geparation. In figure 2, the scheme of formation of such strings
for three successive instants of time is shown.

Investigation of the roots of the simplest particular case of
equation (2.16) is opresented.

Let both flulds be stationary and their kinetic viscosities
the same. In this case, Vi = Vy =0, V) =Vy, my =mp, A =1,

Ry = Ry = 0, and equation (2.16) goes over into an equation of the

Eth degree whose coefficients depsnd only on the two parameters
K and N:

)28 + (A + 133)z5 + (A, + 134)24 +

8 N 7 :
A Z° + Ml+]BﬁZ + m2+:$2

0

[
i
SNr”

(A5 + iBg)2z® + (Ag + 1Bg)2z? + (A; + 1B,)Z +Ag =0  (
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where
Ay == (1 -K)?
Ap = 2K (K - 1) N - K* + 2k - 4% + 6K + 13
Ay = - 2K (K - 1)2
Az = 4KZ (K - 1) N - 2K (3KZ + 13)
Aq = 2K°N?
By = -KPN% 4+ 2 (K% - k3 + 7K2 + 5K) N - 12k3 + 26K% - 10K - ©
Ag = - 2K5N% + 12K%W - 8KS - &%
Ag = - K2 (1 + 2K) W@

Ag = (1 - K?) K2N% + (ak* - 10k> - 4% - 6K) N - 6K3 + 12K2 - &K + 4
By = 2 (K? + 2K - 3)

= 3K% - 14K3 4 132 + 18K + 13 - EKN

Bz
By = 4K (K - 1)2
B, = 8K° - 4K° - 20K - 2K°N
Bg = 4k% (1 - K) N
B. = -~ 2KENE [ZK (L+K) (1 +K - K2) + 8K + 482 + KN +

4K -1 - K2) (1 +K - K2) + 4k% - 203 - 4(K - 1 - K2)2

B, = [K2 (1 +K)2 - k4w 4 [kt v 4k (1+K) (K-1-%2)] W
(3.2)
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The characteristic equation (3.1) is a polynomial whose
coefficients depend nonlinearly on the two parameters K and N.
Bach pair..of values of the paremeters K. and N or each point
of the plane KN correspond to the completely defined polynomial
(3.1), that is, completely determined values of the eight roots

‘of the polynomiml. In the plane KN, it is evidently possible to

find a curve, sach point of which corresponds to the polynomial

(3.1), that has at leagt one root located on the real axis so that

only in crossing this curve is a crossing of the roots through the
real axis vossible. This curve bresks up the plane XN iInto
regions, the points of which each correspond to polynomials (3.1),
that have the same number of roots with positive imaginary part.

These curves are constructed by making use of the method of
Y. I. Neimark (reference 4) that permits a breakup of the plane

of the parameters for the roots of the polynomial lying in the left
or right half=-plane.

The sutstitution 2 = -if is made. The upper half-plane of
the roots of equation (3.1) is transformed into the left half-plane
of the roots of the equation
. R . . s 4
- AOCS + 1(Ay + 1Bl)§7 + (Ao + 1B2)§6 - i(Az + 1]33)§5 - (g + 1By )™ +
i(Ag + 1Be)t® + (Bg + 1Bg)L2 - (A + 1B;)¢ + Ag =0
(3.3)

By substituting ¢ = iﬁ/n in the preceding equation and multi-
plying the result by ns, equation (3.3) is reduced to the form

F(g,m) + iG(¢,n) =0 ' (3.4)
where
F(E,n) = BpE8 + AptTn + AxE8n% 4+ AgESn® + A Ehn® 4+ AgESN® +

_ 7
a(£,n) = B1E™ % BytBn? + By BnS + BE 4t + BgE3S + BgtPn® + Bodn
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If Rg, 1is the space of complex polynomials of degree n and
D(k,n - k) is the manifold of polynomials Ry, having k roots to

the left and n - k roots to the right of the imsginary axis of the
complex sphere, then by setting up the following table:

Ag Ay Ay Az A, Ac A A, Ag

(3.6)
0 By By Bz By Bg Bg By Bg
and by making the transformation
Ao +MBy Ay + MBy Ay + MBs A 4 AqB,...ag
(3.7)

0 By Bo Bz ...

table (3.7) is found to correspond to a polynomial of the same type
with respect to the distribution of the roots relative to the imaginary
axls, as in equation (3.4).

From table (3.6), an inequalilty is obtained that defines the
region in the plane KN corresponding to the presence of the first
root of equation (3.1) in the upper half-plane:

AgBy < 0 (3.8)
By setting M = - AO/Bi in table (3.7)
(AB, - AOBZ)/Bl (AB, - AOBS)/B]_ (B, - AOB4)/B1 cedh Ag

B, ' Bz ...B; 0
(3.9)

By

Because A;B; - AgBy = - 16K(K - 1)°< 0 for X>1, by malti-
plying the elements of the first rows of (3.9) by Blz/(AlBl - AgBy)
and changing signs in the second row

(3.10)
-B -By -Bz -B4 -Bg -Bg -Py
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vhere

By (A8 - AGB;) =D
A1By - AoB2

By(AsBy - Acka) _
ABy - AB,

By (A4B; - AgBs) _ D,
AyBy - AgBg

B, (AzBy =~ A ' :
1(AsBy - ABs) _ ) (3.11)
A1By - ApBp

By (AgBy - ABg) D
ABy - ApBp >

ByAq _D
== = Us
AyBy - AgBp
B Ag 5
—————— = Dy
ABy - AgBy N
The first row of table (3.10) is left unchanged but to the
gsecond row is added the first row. Thus
By Dy Do D3 Dy Ps Dg Dy

(3.12)
From the preceding calculations, an inequality is obtained that
defines the reglion in the plane KN +that corresponds to the presence
of the second root of equation (3.1) in the upper half-plane

B1(D; - B;)<O (3.13)
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By carrying out a transformation, similar to (3.7) of table (3.12),

By + Ap(Dy = Bg) Dy + Ay(Dg - Bz) Dy +An(Ds - By)...Dq

(3.14)
0 D, - B, D, - By eeeCy
By setting Ay = - ]31/(13l - Bo) and substituting in (3.14)
D ) Do(D D ]
Dy (D; - Bp) - By(Dp - By 2(Dy - Bp) - By(Dg - By)
R gl - P
4 1 - B2 2 - B3 - , (3.15)
D3(Dy - Bz) - B1(Dg = Bg)
Dl - B2 LK BN
_ Dz = By «e.. _

Because Dy(Dy - Bs) - By (Dg - B,)> 0 for K>1, by multi-
plying the elements of the first row of (3.15) by (Dy - BZ)Z/

[P1(Dy - B) - By (D - B3)]

g [P2(P1 - Bp) - By (D3 - Bg)] (D) - Bp)
570, = B5) - B, (05 - B3)

Dy
(3.18)
D, - By Dy - Bz

The elements of the first row are subtracted from the elements
of the second row of table (3.16).

D, - By [(D; (D) - Bp) - By(Ds - By)} (D) - Bp)

[D2(Dy - Bz) - By(D5 - By)] (D1 - Bp)

0 Pz -5 - Dy (D] - By) - B (D, - Bz)

(3.17)

From the preceding table, an inequality is obtalned that defines
the region in the plane of the parameters KN +that corresponds to the
presence of the third root of equation (3.1) in the upper half-plane.

[D2(P1 - Bp) - By(Ds - By)] (D) - Bp)

(D; - Bp) | (D - BS} - D, (D] - By) - B1(Dy - Bg) <°

(3.18)
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Similar conditions can be obtained for all the remaining roots
of equation (3.1). This investigation has been limited to the three
condltions that are sufficient for proving the existence of several
unstable waves.

By replacing inequalities (3.8), (3.13), and (3.18) by equations,
the equations of the curves determining the breakup of the XN plane
into regions are obtained. The most lnteresting case of large
K = p1/i2§>l is considered. From inequalities (3.8), (3.13),

and (3.18) and by considering equations (3.2) and (3.1l1l) and neg-
lecting emall powers of K, the following equations are obtained:

—

2(K - 1)°(K + 3) = 0

eON3 + elNz + eoN + ez =0 $

4(XK2 - 1)(K + 3)N + K(K - 1)(K° + 17K2 - 96K + 99) = O

where (3.19)

ep = 128 (K* - k% - 23K% - 39K - 18)

e. = 592K(K° + 8.4K* + 3.18K° - 96K2 - 20.3K + 0.98)

1

o, = 9K2(K6 + 8.4K5 - 97.38% - 2045K3 + 1700K? + 390K + 363)

2

ez = 24K°(K° + 12.3k* + 306K> - 4100K? + 12,300K - 7000)

By plotting the curves (3.19) in the KN plane and separating
by hatched lines the regions corresponding to the signs of the
inequalities (3.8), (3.13), and (3.18), the diagram shown in
figure 3 is obtained. This dlagram shows that for K> O and N>O
a reglon of values of K and N exists that corresponds to the
presence of three roots with positive imaginary part, that is,
of three unstable waves on the surface of separstion.

The division of the KN - plane for the remalining roots could
establish regions with a stlll greater number of roots with posil-
tive imaglnary part. The given incomplete diagram already shows,
however, the existence of several unstable waves. In the presence
of a maximum {35 or c¢;, several infinitely long strings will
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break away from the surface of separation, the cross—secfional
dimensions of which will depend on the wavelength of the critical
disturbance.

Translated by S. Reilss,
National Advisory Committee
for Aeronautics.
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